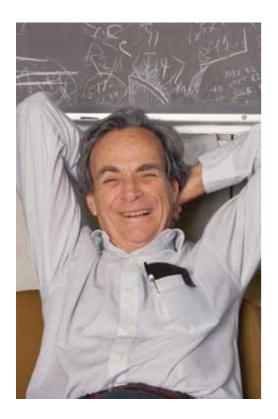
Can we build individual molecules atom by atom?

Mikkel F. Andersen Jack Dodd Centre for Quantum Technology, Department of Physics, University of Otago.

Can we build individual molecules atom by atom?



Richard Feynman 1959: "There's Plenty of Room at the Bottom"

Do we in 2014 have the toolbox required to realize Feynman's dream?

Outline

Lecture 1: Atoms in light

- . Two-level atoms in light
- Optical forces on atoms in light
- . Cooling atoms with light
- . Trapping atoms with light

Lecture 2: Basic molecular physics

Lecture 3: Light induced molecule formation processes

Lecture 4: State of the field and how to proceed

An atom in light

$$H_{A} = H_{\rm CM} + H_{\rm Int} = -\frac{\hbar^{2}}{2M} \nabla_{\rm R}^{2} - \sum \frac{\hbar^{2}}{2m} \nabla_{{\bf r}_{i}}^{2} - \frac{Ze^{2}}{4\pi\epsilon_{0}} \sum \frac{1}{r_{i}} + \frac{e^{2}}{4\pi\epsilon_{0}} \sum \frac{1}{|{\bf r}_{i} - {\bf r}_{j}|} + H_{FS} + H_{HF}$$

$$i\hbar \frac{\partial \Psi}{\partial t} = (H_A + V_{\text{ext}} (\mathbf{r}, \mathbf{R}, t)) \Psi (\mathbf{r}, \mathbf{R}, t)$$

 $H = H_A + V_{\text{ext}} \left(\mathbf{r}, \mathbf{R}, t \right)$

The Interaction with the Light

Assume that the atom is much smaller than the wavelength of light:

$$V_{\text{ext}}(\mathbf{r}, \mathbf{R}, t) = -e\mathbf{r} \cdot \mathbf{E}(\mathbf{R}, t)$$

$$\mathbf{E}(\mathbf{R},t) = \frac{1}{2}\hat{\varepsilon}E_0 \exp\left(i\left(\mathbf{k}\cdot\mathbf{R} - \omega t\right)\right) + c.c.$$

Two-Level Atom fixed at the origin

Assume **R=0** and only two internal states play a role in the internal Dynamics:

$$\left|\Psi\right\rangle = a_{1}\left(t\right)\left|1\right\rangle + a_{2}\left(t\right)\left|2\right\rangle$$

Plug into Schrödinger equation:

 $i\hbar\dot{a}_{1}(t)|1\rangle + i\hbar\dot{a}_{2}(t)|2\rangle = (H_{A} + V_{\text{ext}})(a_{1}(t)|1\rangle + a_{2}(t)|2\rangle)$

Take inner product with |1
angle and |2
angle

$$i\hbar\dot{a}_{1} = E_{1}a_{1}(t) + \langle 1 | V_{\text{ext}} | 1 \rangle a_{1}(t) + \langle 1 | V_{\text{ext}} | 2 \rangle a_{2}(t)$$
$$i\hbar\dot{a}_{2} = E_{2}a_{2}(t) + \langle 2 | V_{\text{ext}} | 2 \rangle a_{2}(t) + \langle 2 | V_{\text{ext}} | 1 \rangle a_{1}(t)$$

Rewriting:

Recall:

$$\langle 1 | V_{\text{ext}} | 2 \rangle = -\frac{1}{2} e \left(\langle 1 | \mathbf{r} | 2 \rangle \cdot \hat{\varepsilon} \right) E_0 \exp\left(-i\omega t\right) - \frac{1}{2} e \left(\langle 1 | \mathbf{r} | 2 \rangle \cdot \hat{\varepsilon}^* \right) E_0 \exp\left(i\omega t\right)$$

Define:

$$\omega_{21} = \frac{E_2 - E_1}{\hbar}$$
$$\chi_{21} = e \left(\langle 2 |\mathbf{r}| 1 \rangle \cdot \hat{\varepsilon} \right) \frac{E_0}{\hbar}$$

And take $E_1 = 0$. The S.E. then becomes:

$$i\dot{a}_{1} = -\frac{1}{2} \left(\chi_{12} \exp\left(-i\omega t\right) + \chi_{21}^{*} \exp\left(-i\omega t\right) \right) a_{2}$$
$$i\dot{a}_{2} = \omega_{21}a_{2} - \frac{1}{2} \left(\chi_{21} \exp\left(-i\omega t\right) + \chi_{12}^{*} \exp\left(-i\omega t\right) \right) a_{1}$$

Rotating wave approximation

Define: $a_1(t) = c_1(t)$ $a_2(t) = c_2(t) \exp(-i\omega t)$

For the c-coefficients we obtain:

$$i\dot{c}_1 = -\frac{1}{2} \left(\chi_{12} \exp\left(-i2\omega t\right) + \chi_{21}^* \right) c_2$$

 $i\dot{c}_2 = \left(\omega_{21} - \omega \right) c_2 - \frac{1}{2} \left(\chi_{21} + \chi_{12}^* \exp\left(-i2\omega t\right) \right) c_1$

It is now very simple!

With:
$$\mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
, $\chi = \chi_{21} = \chi_{12}^*$, and $\Delta = \omega_{12} - \omega$

$$i\hbar\dot{\mathbf{c}} = \hbar \begin{pmatrix} 0 & -\frac{1}{2}\chi \\ -\frac{1}{2}\chi & \Delta \end{pmatrix} \mathbf{c}$$

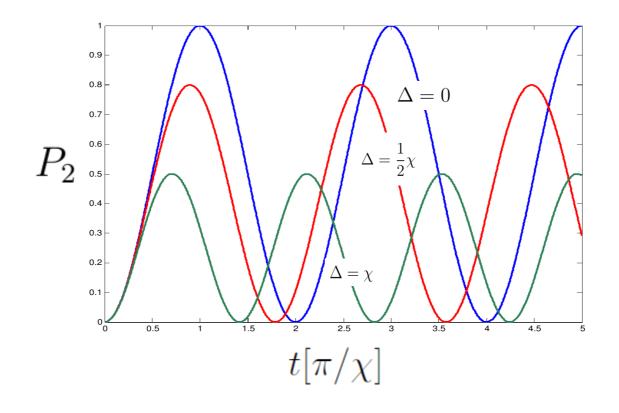
$$\lambda_{\pm} = \hbar \frac{1}{2} \left(\Delta \pm \sqrt{\Delta^2 + \chi^2} \right) = \hbar \frac{1}{2} \left(\Delta \pm \Omega \right)$$

Solution

For
$$\mathbf{c}(0) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

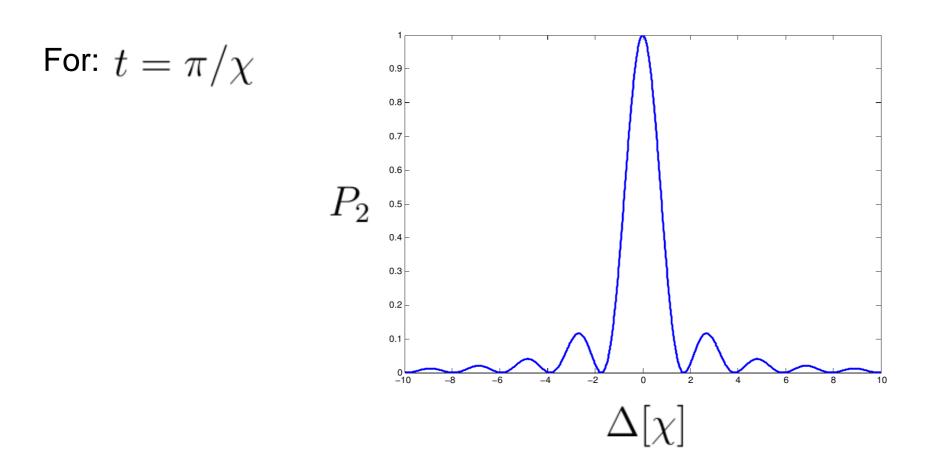
$$c_{1}(t) = \left(\cos\left(\frac{\Omega t}{2}\right) + i\frac{\Delta}{\Omega}\sin\left(\frac{\Omega t}{2}\right)\right)\exp\left(-i\frac{\Delta}{2}t\right)$$
$$c_{2}(t) = \left(i\frac{\chi}{\Omega}\sin\left(\frac{\Omega t}{2}\right)\right)\exp\left(-i\frac{\Delta}{2}t\right)$$

Rabi-Flopping $P_{1}(t) = \frac{1}{2} \left(1 + \left(\frac{\Delta}{\Omega}\right)^{2} \right) + \frac{1}{2} \left(\frac{\chi}{\Omega}\right)^{2} \cos(\Omega t)$ $P_{2}(t) = \frac{1}{2} \left(\frac{\chi}{\Omega}\right)^{2} (1 - \cos(\Omega t))$



Excitation close to resonance

$$P_2(t) = \frac{1}{2} \left(\frac{\chi}{\Omega}\right)^2 \left(1 - \cos\left(\Omega t\right)\right)$$



Spontaneous emission

$$\frac{1}{\tau} = A_{21} = \frac{\omega_{21}^3}{3\pi\epsilon_0\hbar c^3} e^2 |\langle 2|\mathbf{r}|1\rangle|^2$$

Include CM motion of atom

1. Expand on eigen-states of $H_A = H_{CM} + H_{Int}$

$$\Psi = \left(\frac{1}{\sqrt{2\pi}}\int a_1\left(\mathbf{K}, t\right) \exp\left(i\mathbf{K}\cdot\mathbf{R}\right) d^3\mathbf{K}\right) \left|1\right\rangle + \left(\frac{1}{\sqrt{2\pi}}\int a_2\left(\mathbf{K}, t\right) \exp\left(i\mathbf{K}\cdot\mathbf{R}\right) d^3\mathbf{K}\right) \left|2\right\rangle$$

2. Plug into time dependent Schrödinger equation

3. Take inner product with eigen-state of H_A to obtain coupled equations for $a_1(\mathbf{K}',t) = a_2(\mathbf{K}'',t)$

4. Observe that since the dependence of $V_{\text{ext}}(\mathbf{r}, \mathbf{R}, t)$ on the atoms center of mass coordinate goes like $\exp(\pm i\mathbf{k} \cdot \mathbf{R})$ then the equation for $\dot{a}_1(\mathbf{K}', t)$ only contains $a_2(\mathbf{K}' \pm \mathbf{k}, t)$ and $a_1(\mathbf{K}', t)$

- 5. Change from a to c and do rotating wave approximation
- 6. We now arrive at a problem that is mathematically identical to when we ignored CM motion but with a couple of modifications

Modifications

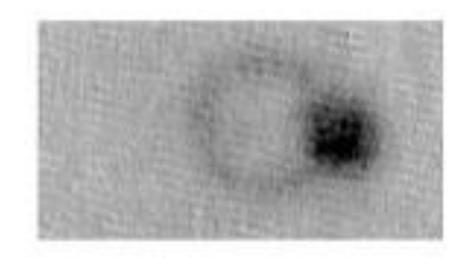
 $c_1(\mathbf{K}', t)$ is only coupled to $c_2(\mathbf{K}' + \mathbf{k}, t)$ and vice versa. The atom changes center of mass momentum when it absorbs or emits light

$$\mathbf{c} \left(\mathbf{K}', t \right) = \begin{pmatrix} c_1 \left(\mathbf{K}', t \right) \\ c_2 \left(\mathbf{K}' + \mathbf{k}, t \right) \end{pmatrix} \qquad i\hbar \dot{\mathbf{c}} = \hbar \begin{pmatrix} 0 & -\frac{1}{2}\chi \\ -\frac{1}{2}\chi & \Delta \left(\mathbf{K}' \right) \end{pmatrix} \mathbf{c}$$

Because the atom changes center of mass momentum when it absorbs or emit light its center of mass energy changes as well. This leads to a momentum dependent resonance frequency. The Doppler effect.

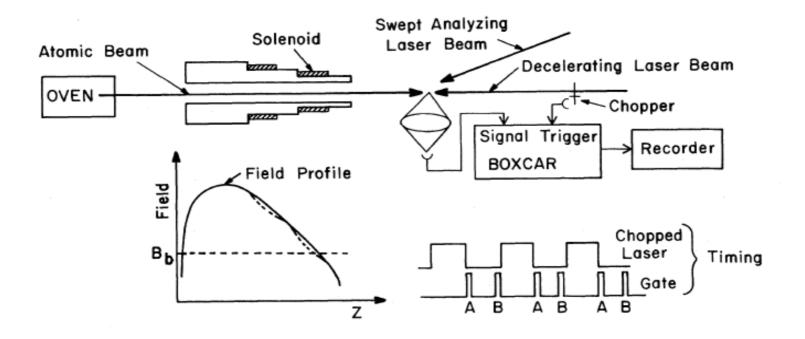
$$\Delta \left(\mathbf{K}' \right) = \frac{E_2 - E_1 + \frac{\hbar^2 k^2}{2M} + \frac{\hbar^2 \mathbf{K}' \cdot \mathbf{k}}{M}}{\hbar} - \omega$$

Radiation Pressure



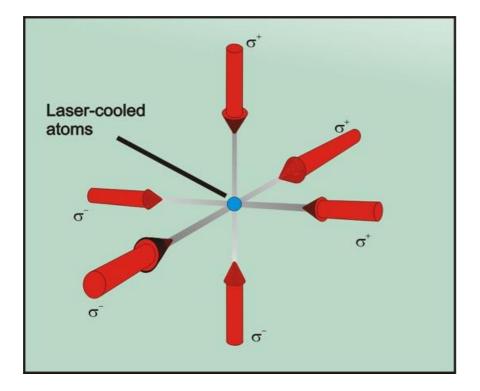
Radiation pressure

Application 1: Slowing of atoms



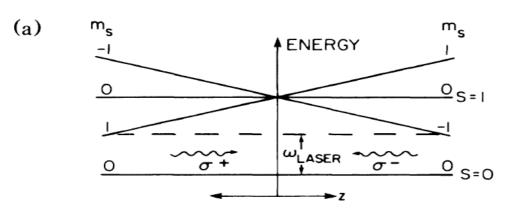
Application 2: Doppler cooling

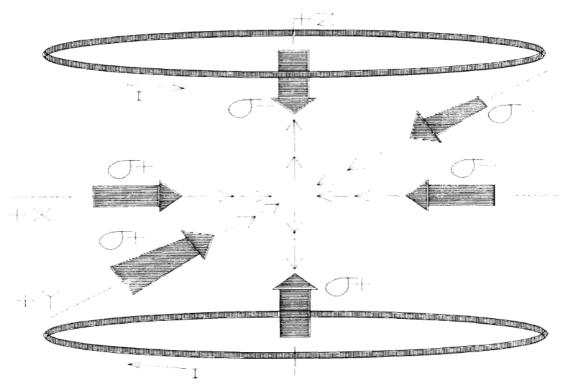
$$\Delta \left(\mathbf{K}' \right) = \frac{E_2 - E_1 + \frac{\hbar^2 k^2}{2M} + \frac{\hbar^2 \mathbf{K}' \cdot \mathbf{k}}{M}}{\hbar} - \omega$$



 $T_D = \frac{h\gamma}{2K_B}$

Application 3: MOT

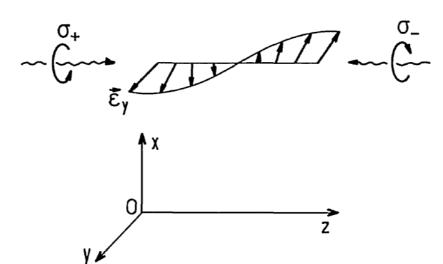


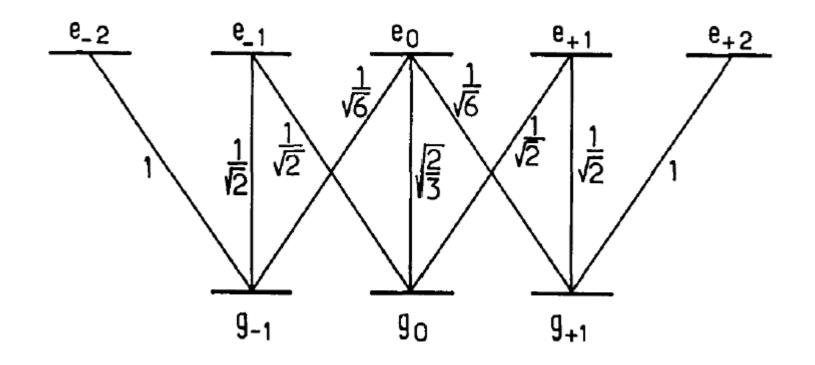


Selection rules:

 $\Delta m_l = 0, \pm 1$ $\Delta l = \pm 1$ $\Delta j = 0, \pm 1$ ($j = 0 \rightarrow j' = 0$ Forbidden) $\Delta m_i = 0, \pm 1$ $\Delta s = 0$ $\Delta F = 0, \pm 1$ ($F = 0 \rightarrow F' = 0$ Forbidden) $\Delta m_F = 0, \pm 1$

Sub-Doppler cooling





Optical dipole force (far off resonance)

$$i\hbar\dot{\mathbf{c}} = \hbar \begin{pmatrix} 0 & -\frac{1}{2}\chi \\ -\frac{1}{2}\chi & \Delta \end{pmatrix} \mathbf{c}$$

$$\lambda_{\pm} = \hbar \frac{1}{2} \left(\Delta \pm \sqrt{\Delta^2 + \chi^2} \right) \simeq \hbar \frac{1}{2} \left(\Delta \pm \left(\Delta + \frac{1}{2} \frac{\chi^2}{\Delta} \right) \right)$$

Summery Lecture 1

•Few-level atoms in light can be treated using rotating wave approximation

- Two-level atoms exposed to near-resonant light undergo Rabi-flopping cycles of absorption an stimulated emission
 Atoms in an excited electronic state can spontaneously emit light and go to a lower energy state
- •Cycles of absorption and spontaneous emission result in a directional radiation pressure force
- Radiation pressure can be used to cool and trap atoms
 Far off resonant light interacts with the atoms via the optical dipole force